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1 Recall

1.1 Definition of Expectation

Definition 1 (Expectation). The expected value, or mean, or first moment, of X is defined to be

E(X) =

∫
xdF (x) =


∑

x xf(x) if X is discrete∫
xf(x)dx if X is continuous

• The sufficient conditions for the existence of E(X).|E(X)| < +∞, if X is discrete∫
|x|fX(x)dx < +∞, if X is continuous

Example 1. The probability density function is given as fX(x) = 1
π(1+x2)

.

∫ +∞

−∞
f(x)dx =

∫ +∞

−∞

1

π(1 + x2)
dx

=
1

π
arctanx

∣∣+∞
−∞

=
1

π
· π = 1

The first possible method to solve for E(X) of this distribution:

E(X) =

∫ +∞

−∞

x

π(1 + x2)
dx

= lim
a→+∞

∫ a

−a

x

π(1 + x2)
dx

= lim
a→+∞

1

2π
log(1 + x2)

∣∣a
−a

= 0
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Similarly,

E(X) =

∫ +∞

−∞

x

π(1 + x2)
dx

= lim
a→+∞

∫ 2a

−a

x

π(1 + x2)
dx

= lim
a→+∞

1

2π
log(1 + x2)

∣∣a
−a

=
1

2π
log 4

Since the two results are different, obviously the method is incorrect.

The second possible method to solve for E(X) of this distribution:

E(X) =

∫ +∞

−∞

x

π(1 + x2)
dx

=

∫ 0

−∞

x

π(1 + x2)
dx+

∫ +∞

0

x

π(1 + x2)
dx

= lim
a→+∞

∫ a

−a

x

π(1 + x2)
dx

∫ 0

−∞

x

π(1 + x2)
dx+

∫ +∞

0

x

π(1 + x2)
dx = lim

a→+∞

∫ 0

−a

x

π(1 + x2)
dx+ lim

b→+∞

∫ b

0

x

π(1 + x2)
dx

But lim
a→+∞

∫ 0

−a
x

π(1+x2)
dx+ lim

b→+∞

∫ b

0
x

π(1+x2)
dx ̸= lim

a→+∞

∫ a

−a
x

π(1+x2)
dx.

Obviously, this method is incorrect. From this, the sufficient conditions for the existence of E(X)

can be further understanded.

If E(X) exists, then
∫
|x|f(x)dx < +∞.∫

|x|dF (x) =
2

π

∫ ∞

0

x dx

1 + x2
=

[
x tan−1(x)

]∞
0

−
∫ ∞

0

tan−1 x dx = ∞

So the mean does not exist. If you simulate a Cauchy distribution many times and take the
average, you will see that the average never settles down. This is because the Cauchy has thick
tails and hence extreme observations are common.

2 The kth moment of X

Definition 2 (kth moment). The kth moment of X is defined to be E(Xk) ,assuming that E(|X|k) < ∞.

Theorem 1. If E(Xk) < ∞ (exist), k ≥ 1, i ≤ k, then E(Xi) < ∞ (exist)
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Proof:

E(Xi) =

∫
R
|x|idFX(x)

=

∫
|x|>1

|x|idFX(x) +

∫
|x|≤1

|x|idFX(x)

≤ 1 +

∫
|x|>1

|x|idFX(x)

≤ 1 +

∫
|x|>1

|x|kdFX(x)

≤ 1 +

∫
R
|x|kdFX(x)

= 1 + E(|X|k) < ∞

3 Properties of Expectation

1. E(
∑n

i=1 aiXi) =
∑n

i=1 aiE(Xi)

2. If X1, X2, · · · , Xk are mutually independent, then E(
∏k

i=1 Xi) =
∏k

i=1 E(Xi)

3. Convex Function: For all 0 ≤ λ ≤ 1, g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y)

⇒ E[g(X)] ≥ g(E[X]) (Jensen’s Inequality)

x

x

y

Red: λg(x) + (1− λ)g(y)

Blue: g(λx+ (1− λ)y)

The red - line is always above the blue - line.

Example 2. X ∼ Binomial(n, p), P(X = k) =
(
n
k

)
pk(1− p)n−k

Method 1:

3



E(X) =
n∑

k=0

k · P(X = k)

=
n∑

k=0

k · Ck
n · pk · (1− p)n−k

=
n∑

k=1

n ·
(
n− 1

k − 1

)
· pk · (1− p)n−k

= np
n∑

k=1

(
n− 1

k − 1

)
pk−1(1− p)n−k

= np
n−1∑
k=0

(
n− 1

k

)
pk(1− p)n−k−1

= np

Method 2: X =
∑n

i=1 Xi, Xi ∼ B(p) (The binomial distribution is the sum of n Bernoulli trials)

(Using property 1) E(Xi) = p

E(X) = E(
n∑

i=1

Xi) =
n∑

i=1

E(Xi) = np

4 Variance

Definition 3 (Variance). The variance of a random variable X is defined as

Var(X)
Def
= E[(X − E(X))2]

If E(X) = 0, then Var(X) = E[X2].

The variance is a measure of how much a random variable deviates from its mean.

Definition 4 (Standard Deviation). The standard deviation is defined as sd(X) =
√

Var(X).

5 Properties of Variance

1. Var(X) = E[X2]− [E(X)]2

Proof:

Var(X) = E[X2 − 2XE(X) + (E(X))2]

= E[X2]− 2E[X · E(X)] + E[(E(X))2]

= E[X2]− 2(E(X))2 + (E(X))2

= E[X2]− (E(X))2
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2. Var(X) ≥ 0 ⇒ E[X2] ≥ (E(X))2

Proof:

Using Jensen’s Inequality: Let g(x) = x2.

Then E[g(x)] ≥ g(E(X)), so E[X2] ≥ (E(X))2.

3. Var(aX + b) = a2Var(X)

Proof:

Var(aX + b) = E[(aX + b)− E(aX + b)]2

= E[aX + b− aE(X)− b]2

= E[aX − aE(X)]2

= a2E[X − E(X)]2

= a2Var(X)

4. Let X1, X2, · · · , Xn be independent random variables.

Then Var(
∑n

i=1 aiXi) =
∑n

i=1 a
2
i Var(Xi)

Proof:

Var(
n∑

i=1

aiXi) = E[
n∑

i=1

aiXi − E[
n∑

i=1

aiXi]]
2

= E[
n∑

i=1

ai(Xi − E(Xi))]
2

= E[
n∑

i=1

a2i (Xi − E(Xi))
2 + 2

∑
1≤i<j≤n

aiaj(Xi − E(Xi))(Xj − E(Xj))]

=
n∑

i=1

a2iE(Xi − E(Xi))
2 + 2

∑
1≤i<j≤n

aiajE[(Xi − E(Xi))(Xj − E(Xj))]

Since
∑n

i=1 a
2
iE(Xi − E(Xi))

2 =
∑n

i=1 a
2
i Var(Xi).

Next, we prove that 2
∑

1≤i<j≤n aiajE[(Xi − E(Xi))(Xj − E(Xj))] = 0:

Since any Xi and Xj are independent of each other, we have E[(Xi − E(Xi))(Xj − E(Xj))] =

E[Xi − E(Xi)] · E[Xj − E(Xj)] = 0× 0 = 0.

6 Sample Mean and Sample Variance

Let x1, x2, · · · , xn be the observed values.

Definition 5 (Sample Mean). The sample mean is defined as x̄n = 1
n

∑n
i=1 xi.

Definition 6 (Sample Variance). The sample variance is defined as S2
n = 1

n−1

∑n
i=1(xi − x̄n)

2.
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Theorem 2. Suppose that {xi}ni=1 are independent and identically - distributed random variables with
E(xi) = µ and Var(xi) = σ2. Let x̄n be the sample mean and S2

n be the sample variance.

1. E(x̄n) = µ

Proof:

E(x̄n) = E( 1
n

∑n
i=1 xi) =

1
n

∑n
i=1 E(xi) =

1
n
· nµ = µ.

Note that this result does not require the random variables to be independent and identically -
distributed. It only requires that E(xi) are equal for all i.

2. Var(x̄n) =
σ2

n

Proof:

Var(x̄n) = Var( 1
n

∑n
i=1 xi) =

1
n2

∑n
i=1 Var(xi) =

1
n2 · nσ2 = σ2

n
.

As n → ∞, Var(x̄n) → 0.

This implies that when the sample size is large enough, the sample mean is close to the true mean.

3. E(S2
n) = σ2

Proof:

E(S2
n) · (n− 1) = E[

n∑
i=1

(xi − x̄n)
2]

= E[
n∑

i=1

(x2
i − 2x̄nxi) + n · x̄2

n]

= E[
n∑

i=1

x2
i − 2x̄n · nx̄n + n · x̄2

n]

= E[
n∑

i=1

x2
i − n · x̄2

n]

=

n∑
i=1

E(x2
i )− n · E(x̄2

n)

=
n∑

i=1

[(E(xi))
2 + Var(xi)]− n · [(E(x̄n))

2 + Var(x̄n)]

= n(µ2 + σ2)− n(µ2 +
σ2

n
)

= (n− 1)σ2

So, E(S2
n) = σ2.
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